The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas
نویسندگان
چکیده
Recent universal-hashing based approaches to sampling and counting crucially depend on the runtime performance of SAT solvers on formulas expressed as the conjunction of both CNF constraints and variable-width XOR constraints (known as CNF-XOR formulas). In this paper, we present the first study of the runtime behavior of SAT solvers equipped with XOR-reasoning techniques on random CNF-XOR formulas. We empirically demonstrate that a state-of-the-art SAT solver scales exponentially on random CNF-XOR formulas across a wide range of XOR-clause densities, peaking around the empirical phase-transition location. On the theoretical front, we prove that the solution space of a random CNF-XOR formula ‘shatters’ at all nonzero XOR-clause densities into wellseparated components, similar to the behavior seen in random CNF formulas known to be difficult for many SAT-solving algorithms.
منابع مشابه
Combining the k-CNF and XOR Phase-Transitions
The runtime performance of modern SAT solvers on random k-CNF formulas is deeply connected with the ‘phase-transition’ phenomenon seen empirically in the satisfiability of random k-CNF formulas. Recent universal hashing-based approaches to sampling and counting crucially depend on the runtime performance of SAT solvers on formulas expressed as the conjunction of both k-CNF and XOR constraints (...
متن کاملConflict-Driven XOR-Clause Learning (extended version)
Modern conflict-driven clause learning (CDCL) SAT solvers are very good in solving conjunctive normal form (CNF) formulas. However, some application problems involve lots of parity (xor) constraints which are not necessarily efficiently handled if translated into CNF. This paper studies solving CNF formulas augmented with xor-clauses in the DPLL(XOR) framework where a CDCL SAT solver is coupled...
متن کاملConflict-Driven XOR-Clause Learning
Modern conflict-driven clause learning (CDCL) SAT solvers are very good in solving conjunctive normal form (CNF) formulas. However, some application problems involve lots of parity (xor) constraints which are not necessarily efficiently handled if translated into CNF. This paper studies solving CNF formulas augmented with xor-clauses in the DPLL(XOR) framework where a CDCL SAT solver is coupled...
متن کاملN ov 2 00 3 Many Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances
This paper analyzes the resolution complexity of two random CSP models (i.e. Model RB/RD) for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into CNF formulas, this paper proves that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential size. Thus, we not only introduce new families...
متن کاملMany Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances
This paper first analyzes the resolution complexity of two random CSP models (i.e. Model RB/RD) for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into CNF formulas, it is proved that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential size. Thus, we not only introduce new familie...
متن کامل